


Magnetothennoelastic field in a body cut 647 

y = 0, jar = J, - M,’ / i3x = 0 (2 < 0) (1.6) 

Hz’ (5, y ) 0) = 0. (1.7) 

Applying now the Laplace transform in t to (1.4) and the conditions (1.6), (1.7), we obtain 
the following boundary value problem for the upper half-plane Y > 0: 

aaH; aw” 
F+ 

.-~---sI~;=o, y=O, aH,‘*I~x=J,Ip (x(O), NT,‘*/ay=O (x>O) 
(1.8) 

aY= 

Here 

H;(x,y,~)=fex~(-pt)H,‘(x,y,t)dt. k2 = pupLe 
0 

The solution of (1.8) can be written in the form 

H:(x,y,~)=~+ ,s A(h)exp(--ihs-yyI/aa+kz)dh, k>a>O 
--la--m 

(1.9) 

where the integration is carried out along the straight line Imh=--a of the complex plane 
h=E+in with cuts k<q<w,-m<q<-k along the imaginary axis. Then the boundary 
conditions (1.5), (1.6) lead to dual equations the solution of which is given by /3/ 

A(h)= Jo -exp(-i+)-&$$ 
2.1, @iik 

(1.10) 

The integral obtained by substituting (1.10) into (1.9) can be calculated using the standard 
methods, by completing the integration path with an arc of the circumference situated in the 
upper (for x(O) and lower (for z> 0) half-plane. As a result we have 

H1’ (x, y, p) Ixco = +-exp (- ky) - -_&-- 
s 

(q + 24 exp (rlz) sin (Y l/q* - k’) 

2aP 1/-k- k VV 
--dl) 

H:(x,k,~)b>o=-g-$& 
m (2k - q)exp(- +)cos (yT/tll--9 d,, 

k tid 6k 

(1.11) 

Let us carry out the following change of variable in (1.11) : 

q = If/E2 + ka 
and transform the result to the form suitable for performing an inverse Laplace transformation. 
Taking into account the expressions 

changing the variable and integrating by parts, we obtain 

8. 
Hz (5, Y, P) ix<” = T Jo x exp (- ky) -- Jo -=;-[(l/i+y’-lxi)“.crp(-kllr’+)-kJxlflF(-Ends] 

P v&k 
(1.12) 

x 

H;‘(x> y, p)Ix>o= -& [(I/s'+Y.+)IVfexp(- kl/m)- kxfF(E. y)G] 
X 

Let us return to the original in (1.12) using the relations /4,5/ containingthe functions 
of parabolic cylinder DV (z) (v = -1/2, "I,). Using the integral representation forthefunctions 
of parabolic cylinderD_t;(z)/6/, we obtain an expression for the component H, of the magnetic 
field vector in the form 
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The components of the current density vector are easily determined from (1.13) and the last 
two equations of (1.3). From the results obtained it follows that the tip of the cut concent- 
rates in it the electric field and current, and the component If, of the magnetic field vector 
remains finite when 

The components of the vector have a singularity at the tip of the cut, of the form 

Ix _--- 
Jo 

i +-fpL,(O), ~-+ypL,~*(o), z-to 
n 

(1.14) 

where 

b* (0) = & 

2. Let us now turn our attention to the problem of determining the temperature field 
due to the Joule sources in an infinite thin plate of thickness 2h. If the heat exchange 
between the surfaces z = kh of the plate and the surrounding medium at zero degrees tempera- 
ture obeys the Newton's law, then the equation of heat conduction for a distribution symmetric- 
al about the middle surface 2=O , has the form /7/ 

V~T*_~T*_~a~=-$, T*(s,y,t) =& 1 Tdz, &-(jx*+ iv’), X2=h/(CP) (2.1) 

-II 

Here T*denotes the temperature averaged over the thickness, Q is the specific Joule heat in- 
tensity, h is the heat conductivity coefficient, c is the specific heat capacity, p is the 
density and a is the coefficient of heat loss from the surfaces z= &h. 

After switching on a constant current with density vector of jo={o.J,,O} a constant temp- 
erature To* = J,‘%/(aa) is set up in the unbounded plate without a cut. The temperature sat- 
isfies the equation (2.1) with the right-hand side of the form -J,“f(h~). It follows that the 
function T*(s, y, t) must be sought under the condition 

T* (z, y, 0) = To* 

The solution of (2.1) with initial condition (2.2) has the form /S/ 
t m 

!f* (x, y, t) = TO* exp (-a&) + 4& \ 11 ha k’, y’, f) 4 iv* (I’, Y’, t’)l x 
0 -0D 

(2.2) 

(2.3) 

-a+ (t - 1’) - 
(z - s’)2 + fy - y’)? 

1 
dz' dy’dt’ ax? 

s=P 4x* (8 - t’) f--I” a0 = Xh 

Introducing the variables z, 8,t, z', 8', t' by means of the formulas 

we transform the expression (2.3), remembering that the function CL" + iv") is symmetric in y 
and depends only on z and 8. Then the expression (2.3) becomes 

The last formula with (1.13) and (1.3) taken into account makes possible the determination of 
the temperature at any point of a plane with a semi-infinite, nonconducting cut. We use the 

formulas (1.14) to obtain an approximate expression for the temperature near the point z=O. 
We have, for z-+0, 

jx* (2’, 0’) + jtlz (z’, fY)z 5 ’ 
4Jc1/2l?(5/~)-Ei- (2.6) 
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Substituting (2.6) into (2.4) and changing the order of integration, we obtain 

z= 
--0t(l-7)- 4aa(1__y) 1 ( IO 

I= -4 dY (2.7) 
4aB(i--y) 

where Z,(z) is a modified Bessel function. 
Then the approximate value of the temperature at the crack tip (2 = 0) will be 

T*(@,t)rTO*exp(-a0l) + 
To*a,t 1 v/v exP(-%t(l- v)) 

s 8)/~T*(%) a o I/i-v 
dy=TO*exp(-a&)$ (2.8) 

The formula (2.8) shows that the temperature of the crack tip grows without limit as I/t as 
t+oo. 

Let us obtain an estimate for the state of stress near the point r=O. In accordance 
with (2.7) the temperature near the crack tip is independent of 8 , therefore the thermal 
stresses in the polar r, e-coordinate system will be given by the formulas 

where O(r, t) is the thermoelastic potential satisfying the equation 

(2.10) 

Here p,v,al are the shear modulus, Poisson's ratio and the linear expansion coefficient. 
Integrating (2.10) and substituting the resulting equation into (2.9), we obtain the thermal 
stresses 

0, = - 2p (1 + v) at + (ST (5, t) dS, ue=-2P(1+v)at[T(r,t)--fSST(5.t)dE] (2.11) 
0 0 

The stresses (2.11) near the crack tip will be compression stresses, and the crack appearing 
at the initial instant will not develop in the absence of an external mechanical load. It 
follows therefore that the retardation of a crack in an unbounded plate through which a con- 
stant current passes, is the result of thermal compressive stresses appearing near the crack 
tip and of intense heating of the material within this zone, up to the melting temperature of 
the material. When a crack appears in a plate subjected to mechanical external loads, the 
thermal compressive stresses caused by the passage of a constant electric current reduce the 
intensity coefficient and retard the crack by increasing the stresses and the temperature neat 
its tip. It should also be noted that the solution given here holds only for an open crack 
caused by a normal fracture, with the edges not in contact with each other. 

The authors thank S. S. Grigorian for assessing the paper and for helpful comments. 
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